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Abstract (English)

The increasing need for information management and analysis systems has
become more evident with the rapid growth of digital data. Digital documents
such as PDF files present challenges in obtaining specific information quickly
and accurately due to their static nature and reliance on manual search. This
research aims to develop a question answering system based on Retrieval-
Augmented Generation (RAG) that is capable of extracting and generating
answers directly from PDF documents. The system is implemented as a web-
based application using the Flask framework and developed through the
Waterfall method, which consists of requirements analysis, system design,
implementation, testing, and maintenance stages. The RAG pipeline
integrates document segmentation, semantic embedding, and vector-based
indexing to support semantic similarity retrieval, which is then combined with
a Large Language Model (LLM) for answer generation. The results
demonstrate that the proposed system is able to generate relevant and accurate
answers that are consistent with the content of the source documents, thereby
improving information retrieval efficiency and reducing the risk of
information hallucination. In addition, session management and password
hashing are applied to ensure data security and the confidentiality of user
documents.
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Abstrak (Indonesia)

Peningkatan kebutuhan akan sistem pengelolaan dan analisis informasi
semakin nyata seiring dengan pertumbuhan data digital yang pesat. Dokumen
digital seperti PDF menimbulkan tantangan dalam memperoleh informasi
spesifik secara cepat dan akurat akibat sifatnya yang statis serta
ketergantungan pada pencarian manual. Penelitian ini bertujuan untuk
mengembangkan sistem question answering berbasis Retrieval-Augmented
Generation (RAG) yang mampu mengekstraksi dan menghasilkan jawaban
secara langsung dari dokumen PDF. Sistem diimplementasikan sebagai
aplikasi web berbasis framework Flask dan dikembangkan menggunakan
metode Waterfall yang meliputi tahapan analisis kebutuhan, perancangan
sistem, implementasi, pengujian, dan pemeliharaan. Pipeline RAG
mengintegrasikan proses segmentasi dokumen, pembentukan semantic
embedding, serta pengindeksan berbasis vektor untuk mendukung pencarian
berdasarkan kesamaan makna, yang kemudian dipadukan dengan Large
Language Model (LLM) dalam proses generasi jawaban. Hasil penelitian
menunjukkan bahwa sistem mampu menghasilkan jawaban yang relevan dan
akurat sesuai dengan isi dokumen sumber, meningkatkan efisiensi pencarian
informasi, serta meminimalkan risiko terjadinya halusinasi informasi. Selain
itu, penerapan manajemen sesi dan mekanisme password hashing
memastikan keamanan serta kerahasiaan dokumen pengguna.
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Pendahuluan

Pada era digital saat ini, dokumen digital seperti PDF, laporan akademik, kontrak,
maupun arsip organisasi menjadi salah satu sumber informasi yang paling banyak digunakan.

Namun, semakin bertambahnya jumlah dokumen tersebut, dapat menimbulkan tantangan baru *
yaitu bagaimana pengguna dapat dengan cepat menemukan dan memperoleh jawaban spesifik
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& dari isi dokumen tanpa harus membaca keseluruhan teks. Tantangan ini mendorong perlunya
* . ¢« sistem cerdas yang tidak hanya dapat menyimpan dokumen, tetapi juga mampu melakukan
question answering secara langsung berdasarkan isi dokumen digital. Permasalahan ini
semakin mendesak terutama dalam lingkungan akademik dan organisasi, di mana pengguna
dituntut untuk memperoleh informasi secara cepat, akurat, dan berbasis sumber yang jelas.

Peningkatan kebutuhan akan sistem pengelolaan dan analisis informasi semakin nyata
seiring dengan pertumbuhan data digital yang sangat besar. Menurut Danopoulos et al. (2019),
era big data ditandai dengan pemrosesan data dalam jumlah masif yang dapat mencapai
triliunan hingga kuintiliun byte setiap harinya. PDF merupakan salah satu format dokumen
digital yang paling luas digunakan di era big data, baik dibidang akademik maupun organisasi.
Dokumen digital, termasuk PDF, merupakan bagian penting dari data tersebut karena
menyimpan informasi bernilai tinggi dalam bentuk teks. Oleh karena itu, dibutuhkan metode
yang tidak hanya mampu menyimpan dokumen sebagai arsip, tetapi juga dapat mengekstraksi
pengetahuan yang terkandung di dalamnya untuk dimanfaatkan secara efektif.

Salah satu pendekatan modern yang berkembang untuk menjawab tantangan tersebut
adalah Retrieval-Augmented Generation (RAG). RAG menggabungkan sistem pencarian
informasi (retrieval) dengan kemampuan generatif dari Large Language Model (LLM).
Pendekatan ini tidak hanya sekadar melakukan pencarian berbasis kata kunci, melainkan juga
memungkinkan interaksi yang lebih kaya seperti question answering, eksplorasi konteks,
hingga pemahaman mendalam terhadap isi dokumen (Fast et al., 2006). Dengan cara ini,
pengguna dapat memperoleh jawaban yang relevan dan kontekstual langsung dari dokumen
digital yang dianalisis.

Retrieval-Augmented Generation (RAG) memungkinkan sistem untuk menjawab
pertanyaan pengguna berdasarkan isi dokumen yang disediakan tanpa perlu melatih ulang
model bahasa besar. Dalam konteks dokumen PDF, pendekatan ini bekerja dengan cara
membagi teks dokumen ke dalam potongan kecil (chunking), lalu merepresentasikannya dalam
bentuk vektor melalui proses semantic embedding. Selanjutnya, vektor-vektor tersebut
disimpan dalam indeks pencarian seperti FAISS, sehingga sistem dapat dengan cepat
menemukan bagian dokumen yang paling relevan dengan pertanyaan. Informasi hasil retrieval
kemudian dipadukan dengan kemampuan generatif LLM untuk menghasilkan jawaban yang
lebih akurat, kontekstual, dan sesuai dengan isi dokumen (Lewis et al., 2020; Karpukhin et al.,
2020; Johnson et al., 2017; Reimers & Gurevych, 2019).

Kemampuan Large Language Model (LLM) dalam menjawab pertanyaan, baik umum
maupun spesifik, telah terbukti pada berbagai penelitian sebelumnya (Jeong, 2023; Beam et
al., 2023; Kamalloo et al., 2023). Namun, penggunaan pengetahuan internal LLM saja sering
kali tidak cukup untuk menjamin kesesuaian jawaban dengan konteks eksternal. Huang et al.
(2025) menunjukkan bahwa konflik dapat muncul ketika model mengandalkan memori
internalnya, sehingga jawaban yang dihasilkan kurang akurat atau bahkan menyimpang dari isi
dokumen yang menjadi acuan. Oleh karena itu, integrasi mekanisme retrieval melalui
pendekatan RAG menjadi penting agar LLM dapat mengakses informasi relevan dari dokumen
yang telah di indeks, sehingga jawaban lebih berbasis fakta dan sesuai konteks.

Dalam praktiknya, banyak pengguna memanfaatkan LLM secara langsung melalui
prompt umum untuk menanyakan isi dokumen PDF. Pendekatan berbasis prompt ini bersifat
manual, tidak terstruktur, dan sangat bergantung pada kemampuan pengguna dalam merancang
pertanyaan yang tepat. Selain itu, pendekatan tersebut memiliki keterbatasan konteks dan tidak
menjamin bahwa jawaban yang dihasilkan benar-benar bersumber dari dokumen yang
dimaksud. Kondisi ini menimbulkan urgensi akan pengembangan sistem yang mampu
mengelola dokumen secara terstruktur serta menyediakan mekanisme question answering yang
konsisten, akurat, dan dapat ditelusuri sumbernya. Oleh karena itu, penelitian®ini menjadi

penting untuk membedakan pendekatan sistematis berbasis Retrieval-Augmented Generation » % \
> . .
AN \
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‘ C(RA ‘)‘dari penggunaan LLM berbasis prompt semata, khususnya dalam konteks pengelolaan
¢ danpemanfaatan dokumen PDF.

“ Sdsaran dari penelitian ini adalah pengguna di lingkungan akademik dan organisasi yang
secara ratin berinteraksi dengan dokumen PDF, seperti mahasiswa, dosen, peneliti, serta staf
administrasi. Kelompok pengguna ini membutuhkan akses informasi yang cepat dan akurat
dari dokumen digital tanpa harus membaca keseluruhan isi dokumen secara manual.

Berdasarkan latar belakang tersebut, penulis tertarik untuk membangun sistem sederhana
berbasis Retrieval-Augmented Generation (RAG) dengan studi kasus question answering dari
dokumen PDF. Sistem ini dirancang untuk mengekstraksi informasi penting dari dokumen
melalui mekanisme chunking, semantic embedding, dan indeks vektor, lalu memanfaatkan
kemampuan generatif LLM untuk menyajikan jawaban yang relevan. Dengan pendekatan ini,
sistem tidak hanya mengandalkan kecerdasan bahasa dari LLM, tetapi juga memanfaatkan
proses retrieval agar informasi yang ditampilkan sesuai dengan isi dokumen. Penelitian ini
diharapkan dapat menjadi prototipe awal menuju solusi dokumen cerdas berbasis Al yang
mampu memberikan jawaban akurat dan kontekstual dari dokumen digital.

Metode Penelitian

Metode pengembangan sistem yang digunakan dalam pembuatan sistem Retrieval-
Augmented Generation (RAG) untuk question answering dari dokumen PDF adalah Waterfall.
Model Waterfall merupakan salah satu pendekatan dalam System Development Life Cycle
(SDLC) yang memandang proses pengembangan perangkat lunak sebagai suatu alur yang
sistematis, berurutan, dan saling bergantung antar tahapan. Karakteristik utama dari metode ini
adalah setiap tahapan harus diselesaikan secara tuntas sebelum dapat melanjutkan ke tahapan
berikutnya, sehingga tidak terdapat pekerjaan paralel maupun proses kembali ke tahap
sebelumnya. Urutan tahapan dalam model Waterfall terdiri dari analisis kebutuhan,
perancangan sistem, implementasi, pengujian, serta pemeliharaan. Dengan alur yang jelas dan
terstruktur, model ini memudahkan tim pengembang dalam mengidentifikasi kebutuhan sejak
awal, merancang solusi teknis secara detail, serta memastikan hasil akhir sesuai dengan
rancangan awal. Model ini memberikan alur kerja yang terstruktur dan mudah dipantau dalam
pengembangan sistem.

Penerapan metode Waterfall pada pengembangan sistem RAG memungkinkan setiap
tahapannya difokuskan secara maksimal untuk mencapai tujuan yang diharapkan. Pada tahap
analisis kebutuhan, sistem didefinisikan untuk mampu membaca dan memproses dokumen
PDF, kemudian mengekstraksi informasi penting yang dapat digunakan untuk menjawab
pertanyaan pengguna. Tahap perancangan dilakukan dengan mendefinisikan arsitektur sistem,
alur proses retrieval, embedding, hingga generation yang menjadi inti dari RAG. Selanjutnya
tahap implementasi merealisasikan rancangan tersebut ke dalam bentuk perangkat lunak
dengan memanfaatkan bahasa pemrograman, framework, serta model machine learning untuk
embedding dan LLM sebagai generator. Tahap pengujian dilakukan untuk memastikan sistem
mampu memberikan jawaban yang akurat dan relevan berdasarkan isi dokumen, serta berjalan
stabil sesuai spesifikasi. Terakhir, tahap pemeliharaan dilakukan untuk memperbaiki bug,
meningkatkan performa, dan menyesuaikan sistem dengan kebutuhan baru. Dengan
karakteristik sekuensialnya, model Waterfall mendukung pengembangan sistem RAG agar
berjalan lebih terstruktur dan terkontrol.

Hasil dan Pembahasan
A. Hasil Implementasi Autentikasi

Sistem menerapkan mekanisme keamanan untuk melindungi akses pengguna dan
memisahkan data antar pengguna. Proses registrasi bertujuan untuk mendaftarkan identitas _
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 ~ ,‘peng ‘una baru ke dalam basis data. Fitur ini dibangun menggunakan kombinasi library
< yveikzeu_g.security untuk kriptografi dan flask untuk manajemen sesi.

def register():
data = request.json
username data.get("username")
password data.get("password")

username password:
jsonify({"error": "Data tidak lengkap"}), 406

hashed_pw = generate password_hash(password)

Figure 1. Kode implementasi hashing password pada registrasi

Pada proses registrasi yang terlihat pada figure 1 di atas, sistem tidak menyimpan kata sandi
pengguna dalam bentuk teks asli (plain text). Library werkzeug security digunakan melalui
fungsi generate_password_hash untuk mengubah kata sandi menjadi format hash yang
terenkripsi sebelum disimpan ke basis data MySQL. Hal ini menjamin keamanan data
kredensial jika terjadi kebocoran data. Antarmuka halaman registrasi ini dapat dilihat seperti
gambar 2 di bawah ini.

Daftar

Figure 2. Antarmuka dari proses registrasi

Figure 2 menunjukkan antarmuka tempat pengguna membuat username dan password
untuk pertama kali, selain itu pengguna juga harus memasukan nama lengkap dan juga alamat
email sebagai kelengkapan data pengguna. Setelah itu pengguna bisa masuk melalui halaman
login.

249 | Page




Scientica 3021-8209

Jurnal limiah Sain dan Teknologi

Login

Figure 3. Antarmuka proses login

Selanjutnya pada proses login, sistem memverifikasi identitas pengguna menggunakan
fungsi check password_hash. Fungsi ini membandingkan kata sandi yang dimasukkan saat
login dengan hash yang tersimpan di database. Jika cocok, sistem memanfaatkan objek session
dari framework Flask untuk menyimpan user_id. Sesi ini berfungsi sebagai token otorisasi

sementara yang memungkinkan pengguna mengakses Implementasi kode untuk proses login
dapat dilihat pada gambar 4 di bawah.

data = reguest.json
username - data.get("username")
password

db = get_db conne

cur = db.cursor( )

cur.execute("SELECT *# FROM users WHERE username = %=", (username,))
user = cur.fetchone()

cur.close()

db.close()

user check_password_hash{user['password'], password):
ion['user_id"'] = user['id']
ssion[ "username” ] user[ "username " ]
jsonify({"message”: "Login berhasil"™})

jsonify({"error": "Username atau password salah"}), 481

Figure 4. Kode implementasi login

Pada halaman Login, pengguna dapat masuk ke dalam sistem menggunakan username dan
password yang telah didaftarkan sebelumnya. Apabila proses autentikasi berhasil, sistem akan
mengarahkan pengguna ke halaman dashboard sistem RAG (Retrieval-Augmented
Generation).
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Halo, apbenk Logowt
Al Document Explorer

1. Upload PDF

Choase Fie | No fla chooen

2. Pilih Dokumen

— piih dokumen - -

3. Ajukan Pertanyaan

Figure 5. Halaman dashboard

Halaman dashboard ini merupakan pusat aktivitas pengguna, di mana pengguna dapat
mengunggah dokumen baru, memilih dokumen yang telah diunggah sebelumnya, serta
mengakses riwayat pertanyaan dan jawaban yang pernah dilakukan, riwayat akan otomatis
muncul ketika user memilih dokumen yang sudah pernah dilakukan tanya jawab sebelumnya.
Seluruh fitur tersebut hanya dapat diakses selama sesi login masih aktif, sehingga keamanan
dan pemisahan data antar pengguna tetap terjaga.

B. Hasil Implementasi Pengolahan Dokumen

Tahap ini merupakan fondasi dari sistem RAG, di mana dokumen PDF mentah diubah
menjadi basis pengetahuan yang dapat dicari. Proses ini melibatkan tiga library utama: fitz
(PyMuPDF), sentence transformers, dan faiss.

1. Proses Ekstraksi PDF dan Chunking

Langkah pertama adalah Ekstraksi Teks. Ketika pengguna mengunggah file PDF, sistem
menggunakan fitz untuk membuka dokumen dan mengekstrak teks dari seluruh halaman.
Library fitz dipilih karena performanya yang tinggi dalam membaca struktur PDF. Setelah teks
diekstrak, dilakukan proses chunking (pemecahan teks) menjadi potongan-potongan kecil
berukuran 500 karakter. Pemecahan ini krusial agar konteks yang diproses tidak melebihi batas
memori model Al.
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doc = fitz.open{pdf_path)
text = " ".join([page.get_text

chunk_size

overlap 18
step = chunk_size - owverlap
chunks = [text[i : 1 + chunk_size] i range(@, len(text), step)]

Figure 6. Proses ektraksi teks dan chunking

Pada figure 6 di atas sistem menggunakan PyMuPDF (fitz) untuk membaca dokumen.
Untuk menjaga keutuhan konteks, teks dipecah menjadi chunks berukuran 500 karakter dengan
teknik overlapping sebesar 100 karakter. Strategi overlap ini sangat penting agar informasi
yang berada di perbatasan pemotongan tidak hilang.

2. Proses Embedding dan FAISS

embedding_model = SentenceTransformer("all-MinilM-L&6-v2")
embeddings = embedding_model.encode(chunks)

index = faiss.IndexFlatlL2({embeddings.shape[1])
index.add(np.array(embeddings))
faiss.write_index(index, faiss_path)

Figure 7. Kode implementasi proses embedding dan FAISS

Potongan kode pada figure 7 di atas menunjukkan proses transformasi teks menjadi
vektor numerik menggunakan model all-MiniLM-L6-v2. Vektor tersebut kemudian disimpan
ke dalam Vector Database FAISS. Sebagai hasil akhir dari rangkaian proses tersebut, sistem
menghasilkan dan mengelola tiga komponen output utama secara terstruktur. Pertama, file
PDF asli disimpan ke dalam direktori penyimpanan sistem, di mana lokasi penyimpanannya
(file path) dicatat ke dalam database SQL. Kedua, hasil chunking teks diekspor menjadi file
terpisah dan disimpan dalam sistem dalam format .txt, path menuju file ini kemudian diperbarui
ke dalam kolom dokumen pada database SQL. Ketiga, indeks vektor yang telah terbentuk
disimpan sebagai file FAISS berekstensi .index pada sistem lokal, yang nantinya akan
dipanggil kembali saat proses pencarian (retrieval) dilakukan. Implementasi kode untuk
menyimpan hasil proses ini dapat dilihat pada gambar di bawah ini.
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filename = file.filename
pdf path = os.path.join(STORAGE[ "pdf™], filename)
file.save(pdf_path)

chunk_file = os.path.join(s C 05" Fr{filename}.txt")
open(chunk_file, -
f.write (™" n---CHUNK oin(chunks) )

faiss path = os.path.join{5TC ["fa Fr{filename} . index™)
index = faiss.IndexFlatlL2({embeddings.shape[l])
index.add{np.array(embeddings))

faiss.write_ index(index, faiss_path)

db = get_db_connection()
cur = db.cursor()

cur . execute(
"INSERT INTO documents (filename, pdf_path, faiss_path, wser_id) VALUES (%s, %=
filename, pdf_path, faiss_path, session['user_id"

)

db. commit(}
cur.close(}
db.close()

Figure 8. Kode implementasi penyimpanan hasil read, chunk dan FAISS

Proses pada figure 8 di atas dieksekusi secara otomatis ketika pengguna mengunggah
dokumen melalui dashboard. Alur ini mencakup pembacaan dokumen, konversi teks menjadi
vektor embedding (disimpan dengan ekstensi index), hingga akhirnya sistem menyimpan
seluruh lokasi (file path) dari hasil tersebut ke dalam database.

a. Hasil Implementasi Sistem Tanya Jawab

Fitur utama sistem adalah kemampuan menjawab pertanyaan berdasarkan dokumen
(RAG). Proses ini menggabungkan pencarian semantik (Retrieval) dan pembuatan teks
generatif (Generation).
1. Retrieval

Pada tahap Retrieval, sistem menerima pertanyaan pengguna dan mengubahnya menjadi
vektor menggunakan model sentence_transformers yang sama dengan proses pengolahan
dokumen. Menggunakan pustaka faiss dan bantuan numpy, sistem mencari 3 potongan teks
(chunks) dari dokumen yang memiliki jarak vektor terdekat atau yang paling relevan dengan
pertanyaan tersebut.
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huestion request.form. get (" question™)
doc_id = request.form.get("document_id"}

db get_db_con

)]
fcur . execute(" . cuments WHERE id = ¥s AND user_id = ¥s", (doc_id, session[‘'user_id'])})
doc_data = cur.fetchone()

doc_data:
Jjsonify({"error”: "Dokumen tidak ditemukan"}), 484

index = faiss.read_index(doc_data[ 'faiss_path®])

chunk_file = os.path. " {doc_data[ 'filename" ]}.twt"™)
open (chunk_file, iF3
all_chunks .read( ---CHUNK_SEP---\n")

q_embed = embedding_model.encode([question])

I = index.search{np.array(q_embed), k=3)
conmtext = "\n".join{[all_chunks[i i 18 i ¢ len{all_chunks)]}

Figure 9. Kode implementasi proses retrieval

Pada figure 9 di atas, alur dimulai ketika backend menerima data question dan
document_id dari request form. Langkah pertama adalah mengambil jalur (path) file FAISS
dan teks dari database SQL. Setelah file indeks FAISS dibaca kembali oleh sistem, pertanyaan
pengguna diproses melalui model embedding (all-MiniLM-L6-v2). Hasil vektor pertanyaan
tersebut kemudian dicocokkan dengan indeks untuk mendapatkan tiga potongan teks (chunks)
dengan skor kemiripan tertinggi. Potongan teks terpilih ini kemudian digabungkan menjadi
satu kesatuan konteks yang siap dikirimkan ke LLM. Berikut ini adalah contoh konteks yang
berhasil di retrieve ketika pengguna mengajukan pertanyaan.

Figure 10. Contoh hasil konteks pada tahap retrieval

Terlihat pada figure 10 konteks dari sebuah dokumen pdf yang berbentuk sebuah artlkel

yang berjudul “Pengembangan Chatbot Berbasis Pdf Menggunakan Local Retrieval® ,
Augmented Generation (Rag) Dan Ollama” dengan pertanyaan “Jenis database apa yang *
e *
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‘digu kan?” sistem RAG menghasilkan konteks yang terlihat seperti potongan potongan
< kallmat acak, di sini lah proses selanjutnya dibutuhkan, yaitu LLM untuk membuat potongan
kallmat‘acak ini menjadi lebih natural.
2. Generation

Langkah terakhir adalah mengirimkan konteks dan pertanyaan ke Large Language
Model (LLM) untuk mendapatkan jawaban yang natural.

context = "\n".join([all_chunks[i i 1[e i < len(all_chunks)])

prompt f"Gunakan konteks berikut umtuk menjawab.‘\nKonteks:'n{context}\n\nPertanyaan: {question}"

response at.completions.create(

content™: prompt}]

answer - response.choices[@].message.content
Figure 11. Kode implementasi proses Generation
Pada tahap generation yang terlihat pada figure 11 di atas, pada tahap ini konteks yang
ditemukan digabungkan dengan pertanyaan asli ke dalam sebuah prompt. Prompt disusun
sedemikian rupa agar model Gemini hanya menjawab berdasarkan fakta di dalam dokumen,
sehingga meminimalisasi kesalahan informasi atau halusinasi. Sistem menggunakan pustaka
open Ai sebagai klien untuk berkomunikasi dengan APl Google Gemini (gemini-2.5-flash).

3. Ajukan Pertanyaan

t § dig

Jawaban

Ciestrutiar

Riwayat Percakapan

Figure 12. Hasil dari tahap generation

Terlihat pada figure 12 di atas, setelah pengguna mengunggah dokumen dan memilih
dokumen yang akan digunakan, pengguna dapat mengajukan pertanyaan melalui antarmuka
web. Pertanyaan pengguna dan dokumen akan diproses oleh sistem RAG, sehingga
mendapatkan informasi yang faktual yang akan dikirimkan ke model LLM (Figure 12). Model
LLM kemudian menghasilkan jawaban berdasarkan konteks tersebut, dan hasil pertanyaan
beserta jawaban yang dihasilkan akan ditampilkan pada bagian riwayat percakapan pada & ®
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\ . dash ‘C)ﬁrd dan disimpan ke dalam basis data SQL pada tabel ga history sebagai riwayat
* < ¢ interaksi.
b. Hasil Perancangan dan Relasi Basis Data

Pada sistem Retrieval-Augmented Generation (RAG) yang dibangun, basis data
dirancang untuk mendukung pengelolaan pengguna, dokumen, serta riwayat tanya jawab
secara terstruktur dan terisolasi antar pengguna. Basis data terdiri dari tiga tabel utama, yaitu
users, documents, dan ga history, yang saling terhubung melalui relasi kunci asing (foreign

key).

v 5 ga_history
n o documents pid im(11)
¢ ig Int11) P —— € 4 document Id nt{11)
filoname = yarchar{255 question . text
pdf_path - varcha(255) answar o
laizs_path | varcha{255) W Créaled_at  tmesiamp

7 craated_at - timestamp $ 9 user & nt(11)

w wser id (1) >

n e users

g id:int(1y)
aama _ varchan 100
amall varchar(100)

¢ SSSmame  varchan b
password - varchar(255)

M CEated a1 | lmestamp

Figure 13. Relasi tabel database

Tabel users berfungsi untuk menyimpan data pengguna yang telah melakukan registrasi,
seperti nama, email, username, password dalam bentuk hash, serta waktu pembuatan akun.
Tabel documents digunakan untuk menyimpan metadata dokumen PDF yang diunggah oleh
pengguna. Informasi yang disimpan meliputi nama file, lokasi penyimpanan file PDF, lokasi
file indeks FAISS, waktu unggah, serta user_id sebagai foreign key yang merujuk ke tabel
users. Relasi ini menunjukkan bahwa satu pengguna dapat memiliki banyak dokumen (one-to-
many), namun setiap dokumen hanya dimiliki oleh satu pengguna.

Selanjutnya, tabel ga_history menyimpan riwayat pertanyaan dan jawaban yang
dihasilkan oleh sistem RAG. Tabel ini menyimpan pertanyaan pengguna, jawaban dari model
LLM, waktu interaksi, serta user_id dan document_id sebagai foreign key. Relasi ini
memungkinkan sistem untuk mengaitkan setiap pertanyaan tidak hanya dengan pengguna yang
mengajukan, tetapi juga dengan dokumen yang digunakan sebagai sumber jawaban.

c. Analisis Hasil (Blackbox Testing)
Table 1. Blackbox Testing

Hasil

Fitur Skenario Output yang diharapkan | pengujian

No N ..
yang diuji | pengujian

1 | Register User daftar User terdaftar ke dalam sistem | Valid
melalui web
2 | Login User login User bisa masuk ke Valid
melalui web | dashboard menggunakan
username dan password

terdaftar
3 | Upload User User dapat mengunggah Valid
Dokumen | mengunggah | dokumen berfromat pdf

dokumen
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. . 4 | Pilih User memilih | User dapat memilih dokumen | Valid
¢ : Dokumen | dokumen yang ingin di gunakan dalam
SN
proses Q&A
5 | Ajukan User User dapat mengajukan Valid

pertanyaan | mengajukan | pertanyaan dan sistem dapat
pertanyaan memberikan jawaban
berdasarkan dokumen
6 | Melihat User Melihat | User dapat melihat Riwayat Valid
riwayat riwvayat Q&A | Q&A sebelumnya
sebelumnya

Berdasarkan hasil implementasi dan pengujian black-box yang telah dilakukan, sistem
Retrieval Augmented Generation (RAG) berhasil diimplementasikan secara menyeluruh,
mencakup autentikasi pengguna, pengolahan dokumen PDF, pencarian semantik, hingga
penyajian  jawaban  berbasis dokumen. Integrasi library fitz (PyMuPDF),
sentence_transformers, dan FAISS terbukti efektif dalam membangun pemrosesan dokumen
yang efisien, di mana proses ekstraksi teks dan chunking berjalan stabil serta mampu menjaga
konteks informasi. Penggunaan embedding lokal meningkatkan efisiensi biaya dan kontrol
data, sementara FAISS memberikan performa pencarian yang cepat dan akurat sehingga
jawaban yang dihasilkan lebih relevan dan minim halusinasi. Pada tahap generation, integrasi
klien OpenAl dengan model Gemini memungkinkan sistem menghasilkan jawaban bahasa
alami yang kontekstual berdasarkan dokumen sumber. Selain itu, penerapan autentikasi
menggunakan werkzeug.security dan manajemen sesi Flask memastikan isolasi data antar
pengguna, sehingga sistem aman digunakan dalam lingkungan multi-pengguna.

Kesimpulan

Berdasarkan hasil perancangan, implementasi, dan pengujian yang telah dilakukan pada
sistem Retrieval-Augmented Generation (RAG), dapat disimpulkan bahwa sistem berbasis
RAG berhasil dibangun dan diimplementasikan dalam bentuk aplikasi web menggunakan
framework Flask. Sistem ini mampu membaca dokumen PDF dan menjawab pertanyaan
pengguna secara otomatis, sehingga dapat mengatasi permasalahan sulitnya memperoleh
informasi secara cepat dari dokumen PDF yang bersifat statis apabila hanya mengandalkan
pencarian manual.

Pipeline RAG pada sistem telah terintegrasi secara menyeluruh, mulai dari proses
pemotongan teks dokumen menjadi potongan berukuran 500 karakter, pembentukan
embedding semantik menggunakan model all-MiniLM-L6-v2, hingga proses pengindeksan
vektor menggunakan library FAISS. Integrasi komponen-komponen tersebut memungkinkan
sistem melakukan pencarian informasi berdasarkan kesamaan makna (semantic similarity),
bukan hanya berdasarkan kecocokan kata kunci semata.

Berdasarkan hasil pengujian, penggunaan konteks hasil pencarian FAISS dengan
pendekatan top-k sebanyak tiga potongan teks yang diproses oleh model generatif melalui
Gemini API terbukti mampu menghasilkan jawaban yang relevan dan akurat. Jawaban yang
dihasilkan tetap berlandaskan pada isi dokumen yang diunggah oleh pengguna, sehingga risiko
terjadinya halusinasi informasi dapat diminimalkan.

Selain itu, aspek keamanan data pengguna juga telah diperhatikan melalui penerapan
manajemen sesi serta mekanisme password hashing. Dengan implementasi tersebut, dokumen
yang diunggah bersifat privat dan hanya dapat diakses serta diproses oleh pengguna yang
memiliki hak akses, sehingga keamanan dan kerahasiaan data pengguna dapat terjaga dengan
baik. ' ~ '
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